Harvard Developed AI Identifies the Shortest Path to Human Happiness

The researchers created a digital model of psychology aimed to improve mental health. The system offers superior personalization and identifies the shortest path toward a cluster of mental stability for any individual.
Deep Longevity, in collaboration with Harvard Medical School, presents a deep learning approach to mental health.

Deep Longevity has published a paper in Aging-US outlining a machine learning approach to human psychology in collaboration with Nancy Etcoff, Ph.D., Harvard Medical School, an authority on happiness and beauty.

The authors created two digital models of human psychology based on data from the Midlife in the United States study.

The first model is an ensemble of deep neural networks that predicts respondents’ chronological age and psychological well-being in 10 years using information from a psychological survey. This model depicts the trajectories of the human mind as it ages. It also demonstrates that the capacity to form meaningful connections, as well as mental autonomy and environmental mastery, develops with age. It also suggests that the emphasis on personal progress is constantly declining, but the sense of having a purpose in life only fades after 40-50 years. These results add to the growing body of knowledge on socioemotional selectivity and hedonic adaptation in the context of adult personality development.

The second model is a self-organizing map that was created to serve as the foundation for a recommendation engine for mental health applications. This unsupervised learning algorithm splits all respondents into clusters depending on their likelihood of developing depression and determines the shortest path toward a cluster of mental stability for any individual. Alex Zhavoronkov, the chief longevity officer of Deep Longevity, elaborates, “Existing mental health applications offer generic advice that applies to everyone yet fits no one. We have built a system that is scientifically sound and offers superior personalization.”

To demonstrate this system’s potential, Deep Longevity has released a web service FuturSelf, a free online application that lets users take the psychological test described in the original publication. At the end of the assessment, users receive a report with insights aimed at improving their long-term mental well-being and can enroll in a guidance program that provides them with a steady flow of AI-chosen recommendations. Data obtained on FuturSelf will be used to further develop Deep Longevity’s digital approach to mental health.

Source: https://scitechdaily.com/harvard-developed-ai-identifies-the-shortest-path-to-human-happiness/

Curiosity is linked to crystallized intelligence but not fluid intelligence, study finds

Curiosity is important for human development and learning and encourages an exploration for new information. New research published in the Journal of Individual Differences found that high dispositional curiosity is related to greater general knowledge, but not necessarily related to fluid intelligence.

Curiosity is important for both crystallized intelligence (i.e., one’s general knowledge) and fluid intelligence (i.e., one’s ability to reason and use novel information). “Seeking out new environments, being more attentive, and exploring more and more comprehensively might, in turn, also increase the probability of gaining new information,” explain study author Freda-Marie Hartung and colleagues. “Thus, it is plausible to assume that interindividual differences in epistemic curiosity are related to interindividual differences in general knowledge.”

Thus, the researchers were interested in how dispositional curiosity influences one’s acquisition of knowledge and how fluid intelligence affects this relationship. Hartung and her colleagues recruited 100 participants during lectures at a German University to complete a self-report questionnaire on the relevant personality traits (i.e., curiosity, conscientiousness, social anxiety). They also completed measures assessing their general knowledge (i.e., geography, history, math, natural sciences) and fluid intelligence (i.e., reasoning and memory tasks).

In general, results show that curiosity is positively related to one’s general knowledge and reasoning ability. However, it is not related to mental processing speed or memory indicating that curiosity is not related to fluid intelligence. Further analysis suggested that the relationship between curiosity and general knowledge is likely explained by one’s reasoning ability, not overall fluid intelligence.

“The findings suggest that epistemic curiosity facilitates the acquisition of knowledge by promoting reasoning. Thus, the findings of the present study shed light on the mechanisms connecting curiosity and knowledge,” the researchers said.

The authors do cite some limitation to this work such as the inability to infer causality. Specifically, we cannot say from these data whether differences in curiosity cause changes general knowledge or vice versa. Further, the sample was small and likely not representative of the general population.

Source: https://www.psypost.org/2022/07/curiosity-is-linked-to-crystallized-intelligence-but-not-fluid-intelligence-study-finds-63472

AI Algorithm Predicts Future Crimes One Week in Advance With 90% Accuracy

A new algorithm forecasts crime by learning patterns in time and geographic locations from public data on violent and property crimes. It can predict future crimes one week in advance with about 90% accuracy.

A new computer model uses publicly available data to predict crime accurately in eight cities in the U.S., while revealing increased police response in wealthy neighborhoods at the expense of less advantaged areas.

Advances in artificial intelligence and machine learning have sparked interest from governments that would like to use these tools for predictive policing to deter crime. However, early efforts at crime prediction have been controversial, because they do not account for systemic biases in police enforcement and its complex relationship with crime and society.

University of Chicago data and social scientists have developed a new algorithm that forecasts crime by learning patterns in time and geographic locations from public data on violent and property crimes. It has demonstrated success at predicting future crimes one week in advance with approximately 90% accuracy.

In a separate model, the team of researchers also studied the police response to crime by analyzing the number of arrests following incidents and comparing those rates among neighborhoods with different socioeconomic status. They saw that crime in wealthier areas resulted in more arrests, while arrests in disadvantaged neighborhoods dropped. Crime in poor neighborhoods didn’t lead to more arrests, however, suggesting bias in police response and enforcement.

“What we’re seeing is that when you stress the system, it requires more resources to arrest more people in response to crime in a wealthy area and draws police resources away from lower socioeconomic status areas,” said Ishanu Chattopadhyay, PhD, Assistant Professor of Medicine at UChicago and senior author of the new study, which was published on June 30, 2022, in the journal Nature Human Behaviour.

The new tool was tested and validated using historical data from the City of Chicago around two broad categories of reported events: violent crimes (homicides, assaults, and batteries) and property crimes (burglaries, thefts, and motor vehicle thefts). These data were used because they were most likely to be reported to police in urban areas where there is historical distrust and lack of cooperation with law enforcement. Such crimes are also less prone to enforcement bias, as is the case with drug crimes, traffic stops, and other misdemeanor infractions.

Previous efforts at crime prediction often use an epidemic or seismic approach, where crime is depicted as emerging in “hotspots” that spread to surrounding areas. These tools miss out on the complex social environment of cities, however, and don’t consider the relationship between crime and the effects of police enforcement.

“Spatial models ignore the natural topology of the city,” said sociologist and co-author James Evans, PhD, Max Palevsky Professor at UChicago and the Santa Fe Institute. “Transportation networks respect streets, walkways, train and bus lines. Communication networks respect areas of similar socio-economic background. Our model enables discovery of these connections.”

The new model isolates crime by looking at the time and spatial coordinates of discrete events and detecting patterns to predict future events. It divides the city into spatial tiles roughly 1,000 feet across and predicts crime within these areas instead of relying on traditional neighborhood or political boundaries, which are also subject to bias. The model performed just as well with data from seven other U.S. cities: Atlanta, Austin, Detroit, Los Angeles, Philadelphia, Portland, and San Francisco.

“We demonstrate the importance of discovering city-specific patterns for the prediction of reported crime, which generates a fresh view on neighborhoods in the city, allows us to ask novel questions, and lets us evaluate police action in new ways,” Evans said.

Chattopadhyay is careful to note that the tool’s accuracy does not mean that it should be used to direct law enforcement, with police departments using it to swarm neighborhoods proactively to prevent crime. Instead, it should be added to a toolbox of urban policies and policing strategies to address crime.

“We created a digital twin of urban environments. If you feed it data from happened in the past, it will tell you what’s going to happen in future. It’s not magical, there are limitations, but we validated it and it works really well,” Chattopadhyay said. “Now you can use this as a simulation tool to see what happens if crime goes up in one area of the city, or there is increased enforcement in another area. If you apply all these different variables, you can see how the systems evolves in response.”

Reference: “Event-level Prediction of Urban Crime Reveals Signature of Enforcement Bias in U.S. Cities” by Victor Rotaru, Yi Huang, Timmy Li, James Evans and Ishanu Chattopadhyay, 30 June 2022, Nature Human Behaviour.

Source: https://scitechdaily.com/ai-algorithm-predicts-future-crimes-one-week-in-advance-with-90-accuracy/

Artificial intelligence and moral issues. Towards transhumanism?

As artificial intelligence travels through the solar system and gets to explore the heliosphere (enclosing the planets), it will adapt by making decisions that enable it to do its job. Many people in the field of astrobiology are in favour of the so-called post-biological cosmos vision. Is it because of the desire to conquer space that we humans are sowing the seeds of our own destruction in favour of artificial intelligence? Or are we unconsciously following some sort of master plan in which flesh and blood beings are destined to become extinct and be hybridised by silicon and synthetic materials? As for the mind, memory, consciousness, could there also be a place for humans in a robot’s brain? Should our mortal shells be replaced by something more robust and durable, could we still consider ourselves human?

The proof of this is a series of fairly recent experiments that seem to suggest that robots will not only be able to acquire human consciousness but also reproduce it. Ottawa, Canada, June 2017: Carlton University’s Department of Mechanical and Aerospace Engineering announced the development of a technology that would revolutionise the future of space travel. Engineers hope to create a 3D printer that will one day be able to build structures on the moon using only minerals from there, but probably even more shocking is the fact that it will have the ability to self-replicate.

As man goes ever further in his attempts to colonise space, technology is being developed – as mentioned – through which a 3D printer can self-replicate using materials collected on the surface of a specific celestial body. In this way, printers will be able to double in number from time to time. This would mean that by using artificial intelligence and 3D printing, installations and bases can be created on celestial bodies, including satellites, planets and asteroids.

Although there are strong doubts that mankind will be able to develop a technology that makes machines capable of self-replicating in the near future, there is a project known as RepRap that has been going on since 2005 to design a 3D printer that can make everyday objects and even create some spare parts. 3D printing is a huge step forward for the development of scientific progress. What is even more incredible, however, is that this type of printer is capable of reproducing itself and we are therefore dealing with a technology that is capable of surpassing its own purpose and will also be able to build better machines that are faster and more powerful.

In the 1940s – over 20 years before man set foot on the moon – the Hungarian scientist John von Neumann (1903-57) – one of the greatest mathematicians in modern history and one of the prominent scientific personalities of the 20th century, as well as creator of the game theory – believed that self-replicating machines would enable man to venture beyond our solar system to explore the entire galaxy.

According to Japanese-born astrophysicist Michio Kaku – a summa cum laude graduate of Harvard University: “Man is led to believe that, in order to explore the stars, you need a huge spaceship, but this is not the case. The most effective way to explore the galaxy with so many planets is to send a small probe like John von Neumann’s”.

Von Neumann’s probe is a self-replicating machine that explores space and uses materials collected in the universe to create identical copies of itself. For example, if a probe is sent to Jupiter, once it gets to its destination it will collect material from that planet to give birth to the next generation of itself. At that juncture, the new probe will continue its journey to other worlds, and once it reaches its destination, it will in turn collect material to self-replicate again and again. In this way, the chances of reaching the edge of the heliosphere will increase exponentially. Many believe that one of the obstacles of interplanetary space travel is the time it would take a spacecraft to travel from one place to another. However – apart from the help of warp drive and wormholes (faster-than light travels according to the Einstein-Rosen bridge theory) – at that juncture, instead of spaceships full of humans, could not the universe be explored and populated with probes like von Neumann’s? We now know that flesh and blood people are not suitable for space travel. Exploration scientists have been working for decades on the project of turning mankind into mechanical or transhuman beings in order to create an entire cloned race of robots.

Transhumanism is a philosophical and intellectual movement that advocates improving the human condition by developing and making widely available sophisticated technologies that can greatly enhance longevity and cognition. It also predicts the inevitability of such technologies in the future.

In essence, it will be possible to upload our consciousness (in the form of digital information) onto a computer and transmit data to a specific location in space, as we shall see later.

In the 17th century, the French philosopher Descartes developed the concept of mind-body dualism, according to which human consciousness is not produced by the body, but is distinct from it: the body and mind of a human being, therefore, do not interact with each other because they are two separate things.

While observing – with perplexity – the progress and horrors of the industrial revolution, on June 13, 1863 the English author Samuel Butler (1835-1902) wrote in the Christchurch (New Zealand) newspaper, The Press, a prophetic letter to the editor entitled Darwin Among the Machines, in which – inter alia – he stated with great foresight and vision:

The views of machinery which we are thus feebly indicating will suggest the solution of one of the greatest and most mysterious questions of the day. We refer to the question: What sort of creature man’s next successor in the supremacy of the earth is likely to be. We have often heard this debated; but it appears to us that we are ourselves creating our own successors; we are daily adding to the beauty and delicacy of their physical organisation; we are daily giving them greater power and supplying by all sorts of ingenious contrivances that self-regulating, self-acting power which will be to them what intellect has been to the human race. In the course of ages we shall find ourselves the inferior race. Inferior in power, inferior in that moral quality of self-control, we shall look up to them as the acme of all that the best and wisest man can ever dare to aim at. No evil passions, no jealousy, no avarice, no impure desires will disturb the serene might of those glorious creatures. […]. We take it that when the state of things shall have arrived which we have been above attempting to describe, man will have become to the machine what the horse and the dog are to man. He will continue to exist, nay even to improve, and will be probably better off in his state of domestication under the beneficent rule of the machines than he is in his present wild state. […] Day by day, however, the machines are gaining ground upon us; day by day we are becoming more subservient to them; more men are daily bound down as slaves to tend them, more men are daily devoting the energies of their whole lives to the development of mechanical life. The upshot is simply a question of time, but that the time will come when the machines will hold the real supremacy over the world and its inhabitants is what no person of a truly philosophic mind can for a moment question. Our opinion is that war to the death should be instantly proclaimed against them. Every machine of every sort should be destroyed by the well-wisher of his species. Let there be no exceptions made, no quarter shown; let us at once go back to the primeval condition of the race. If it be urged that this is impossible under the present condition of human affairs, this at once proves that the mischief is already done, that our servitude has commenced in good earnest, that we have raised a race of beings whom it is beyond our power to destroy, and that we are not only enslaved but are absolutely acquiescent in our bondage.” (Samuel Butler, A First Year in Canterbury Settlement With Other Early Essays, A.C. Fifield, London 1941, pp. 182-185).

John Von Neumann argued he started from Descartes’ theory and Butler’s assertions to arrive at the assertion that self-replicating machines need to be used to explore other planets. However, Rabbi Ariel Bar Tzadok stated: “If we were to create an artificial life form and if it developed, evolved and grew, it could become superior to modern man. This would create a moral problem, since human beings tend to worship what they believe is greater than themselves.”

Are we probably close to a new phase in human evolution during which we will become transhuman? Prof. Kaku replied: “I think that by the end of the century we will be able to digitise consciousness. Everything known about man such as personality, memories, emotions, and even the nerve pathways will be digitised. What will it be used for? To place our consciousness on a laser beam and direct it into the sky: in a second, human consciousness will arrive on a specific celestial body where it will be downloaded into a central system and then inserted into a mechanical avatar. I call it laser transfer”.

If the technology of transhumanism is successful, the content of our brain will soon be stored in the cloud. Hence, as the human civilisation prepares for the next phase of its evolution, will those we consider human beings become extinct or transhuman? That is, with intelligence developed in AI-driven cybernetic bodies. Numerous scholars deny this possibility, arguing that a human being is more than a mix of flesh and bones. Man means thought, ideas and especially feelings that make him a being different from any of his fellows and all other living creatures in the universe. This awareness should reassure and motivate us as we prepare to fulfil mankind’s ultimate destiny, i.e. to turn ourselves into a future generation that will explore worlds for now far away from us.

Source: https://moderndiplomacy.eu/2022/07/06/artificial-intelligence-and-moral-issues-towards-transhumanism/

About GIGA Society

GIGA Society is the world’s most unique high-IQ association for those who scored IQ 190 SD15 on the high-range IQ test. The society has the vision to become an official society for people with Giga level IQ 190.

The term Giga is an abbreviation of gigabyte, meaning 1 billion, and Giga society is a group of people with an IQ of 1 in 1 billion. As such, the term Giga is a generic noun that cannot be patented.

The official GIGA Society differs from other giga-level societies in that it adopts scores from a variety of high-range IQ tests in the world. one of the giga-level societies only accepts the scores of one author’s tests as admission tests. This is a very biased policy. To break this atrocity, the official GIGA Society considers the world’s excellent high-range tests as admission tests.

The official GIGA Society was originally established in 2001 as the Esoteriq Society by Masaaki Yamauchi. The GIGA Society shares the history and spirit of the Esoteriq Society. Currently, the two societies are operating independently.

At the office of the GIGA Society, YoungHoon Kim, Masaaki Yamauchi, and Iakovos Koukas serve as GIGA Society administrators.